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Diffusion models are a type of generative models that draw inspiration from the
principles of non-equilibrium thermodynamics. This process unfolds in two primary
steps: the forward process and the reverse process, both operating as Markov
chains.

In this journey, we get familiar with these steps, implement them, train the model,
and finally, generate new samples using a trained model. You can use pytorch or
tensorflow libraries for the implementation.
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1. Dataset

In this project, you will use two datasets: the MNIST dataset, which consists of handwritten
digits from 0 to 9, and the Persian digits and letters dataset, which includes Persian digits
from 0 to 9 and 32 Persian letters.

2. Forward Process

The forward step starts from a data point sampled from a real data distribution .𝑥
0

∼ 𝑞(𝑥)

During this process, we add Gaussian noise to the sample in T timesteps, starting from the
input data point and ending with pure Gaussian noise distribution. This Markov process is
as follows:
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Where:

● is the initial input image, is the noisy image at timestep t, is the noisy image𝑥
0

𝑥
𝑡

𝑥
𝑡−1

at timestep t-1, which is less noisy compared to .𝑥
𝑡

● N is the Normal distribution with a mean of and a covariance matrix of .1 − β
𝑡

β
𝑡
 𝐼

● is called “noise schedule” affecting the value of noise in each sample.β
𝑡

https://en.wikipedia.org/wiki/MNIST_database
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In the above formula of , the noise is added sequentially, however, we can𝑞(𝑥
𝑡
 | 𝑥

𝑡−1
)

directly compute the noisy image at any arbitrary timestep t only from . It is possible by𝑥
0

reparameterization trick, which results in the following formula:
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Where:

● is the Normal distribution with mean and covariance matrix.𝑁 α
𝑡

 (1 − α
𝑡
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To implement the forward process, define the following variables, and complete the
following functions in the diffusion_model.py file. Note that in this implementation we

fix . Therefore, the forward process has no learnable parameters.β
𝑡

Class DiffusionModel(nn.Module):

def __init__(self, backward_process_model, beta_start, beta_end,
timesteps=1000, device=”cuda”):

self.backward_process_model = backward_process_model

self.betas =get_linear_beta_schedule(beta_start, beta_end, timesteps)

# TODO: Define alphas variable based on q(xt|x0) formula

# TODO: Define alpha_bars variable based on q(xt|x0) formula

def get_linear_beta_schedule(beta_start, beta_end, timesteps):

# TODO: Compute beta values by dividing the range from beta_start to
beta_end into timesteps linearly

# TODO: Return betas

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/#forward-diffusion-process
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def add_noise(x_0, timestep):

# TODO: Define noise as a random Gaussian noise with similar shape
to x_0

# TODO: Compute x_t by adding noise to x_0 based on q(xt|x0) formula

# TODO: return x_t, noise

3. Reverse Process
The reverse process is defined as a Markov chain with a learned Gaussian transition model

that starts with the last noisy image from the forward process , which𝑝(𝑥
𝑇
) = 𝑁(𝑥
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is pure Gaussian noise. The goal of this process is to denoise the samples in the backward
direction.
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Where:

● is the initial input image, is the noisy image at timestep t, is the noisy𝑥
0
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image at timestep t-1, which is less noisy compared to .𝑥
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● is the Normal distribution with mean and covariance matrix.𝑁 µ
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We need to use a neural network parameterized by to learn the parameters such thatθ

is as close as possible to . In this project, we set and the only𝑝
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parameters that the model learns are those of . To implement the reverse process,µ
θ
(𝑥

𝑡
, 𝑡)

you need to make changes in unet.py.
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3.1. Implement Timestep Embedding

Before Implementing a neural network, consider that the parameters of the model are
shared across time. As a result, we need to tell the network what time step we are in. To
implement this, you need to encode the timesteps using positional embeddings. For this
project, you may use sinusoidal positional embedding.

𝑃𝐸(𝑝𝑜𝑠,  2𝑖) = 𝑠𝑖𝑛( 𝑝𝑜𝑠

100002𝑖/𝑑 ) 

𝑃𝐸(𝑝𝑜𝑠,  2𝑖 + 1) = 𝑐𝑜𝑠( 𝑝𝑜𝑠

100002𝑖/𝑑 ) 

Where:
● pos is the position of the token in sequence (timesteps)
● i is the index of embedding dimension
● d is the embedding size

To implement this, complete the get_sinusoidal_timesteps_embedding function.

def get_sinusoidal_timesteps_embedding(timesteps, embedding_dim):

# TODO: Compute timesteps_embeddings using above formula

# TODO: Return timesteps_embeddings

3.2. Implement U-Net-based Model

Now, you need to implement a custom U-Net-based model as a neural network for

. To do this, make changes in the UNet class. Remember that you need to useµ
θ
(𝑥

𝑡
, 𝑡)

timesteps embeddings in the blocks of your neural network.

3.3. Implement Loss function

Now, we need a loss function to compute the difference between the added noise in the
forward step and the result of the reverse process.
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https://en.wikipedia.org/wiki/U-Net
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where :

● is the added noise in the forward processϵ
𝑡
 

● is the predicted noise in the reverse processϵ
θ
 

● denotes the Euclidean distance.| || |

def get_loss(noise, noise_pred):

# TODO: Compute l2-norm between noise and noise_pred

4. Train the model

Now, let’s bring everything together and train the model. Train the model on each of the
given datasets: the MNIST dataset and the Persian digits and letters dataset. To do this,
complete the forward function in the DiffusionModel class. Then, you can run the
diffusion_model.py file to train the model.

def forward(x):

# TODO: Define variable t by randomly selecting a timestep for each
image in a batch of images of x

# TODO: Use add_noise function to do the forward process by adding
noise to x

# TODO: Use reverse_process_model to do the reverse process by
predicting the noise of the forward step’s results

# TODO: Return noisy x, added noise, predicted noise

5. Evaluate & Sample

For this step, you need to complete the following functions in the diffusion_model.py
file. First, to evaluate your trained model, complete the evaluate function.

def evaluate(diffusion_model, test_loader, device=”cuda”):

# TODO: Compute the accuracy of your trained model on the test data
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Now, it’s time to generate new samples using your trained model. To do this, complete the
sample function.

@torch.no_grad()

def sample():

# TODO: Use trained model to generate new samples

Presentation

For presentation, you should be able to:

● Provide a full explanation of all parts of the code
● Show the plots, including the model’s accuracy and loss during training for each

epoch
● Generate new samples for each of the given datasets
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