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Diffusion models are a type of generative models that draw inspiration from the
principles of non-equilibrium thermodynamics. This process unfolds in two primary
steps: the forward process and the reverse process, both operating as Markov
chains.

In this journey, we get familiar with these steps, implement them, train the model,
and finally, generate new samples using a trained model. You can use pytorch or
tensorflow libraries for the implementation.
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1. Dataset

In this project, you will use two datasets: the MNIST dataset, which consists of handwritten
digits from 0 to 9, and the Persian digits and letters dataset, which includes Persian digits
from 0 to 9 and 32 Persian letters.

2. Forward Process

The forward step starts from a data point sampled from a real data distribution X, ~ q(x).

During this process, we add Gaussian noise to the sample in T timesteps, starting from the
input data point and ending with pure Gaussian noise distribution. This Markov process is
as follows:
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Where:
* X, is the initial input image, xtis the noisy image at timestep t, xt_lis the noisy image

at timestep t-1, which is less noisy compared to X

e Nis the Normal distribution with a mean of , /1 — Bt and a covariance matrix of Bt L.

° Bt is called “noise schedule” affecting the value of noise in each sample.


https://en.wikipedia.org/wiki/MNIST_database
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In the above formula of q(xt | xt_l), the noise is added sequentially, however, we can

directly compute the noisy image at any arbitrary timestep t only from X It is possible by

reparameterization trick, which results in the following formula:
q(xt|x0) = N(xt| ax, 1 - o )1

Where:

® N is the Normal distribution with ;t mean and (1 — (xt) I covariance matrix.

To implement the forward process, define the following variables, and complete the
following functions in the diffusion_model. py file. Note that in this implementation we

fix Bt. Therefore, the forward process has no learnable parameters.

Class DiffusionModel (nn.Module) :

def init (self, backward process model, beta start, beta end,
timesteps=1000, device="cuda”):

self.backward process model = backward process model
self.betas =get linear beta schedule (beta start, beta end, timesteps)

# TODO: Define alphas variable based on g(x.|x,) formula

# TODO: Define alpha bars variable based on g(x.[|x,) formula

def get linear beta schedule (beta start, beta end, timesteps):

# TODO: Compute beta values by dividing the range from beta start to
beta end into timesteps linearly

# TODO: Return betas


https://lilianweng.github.io/posts/2021-07-11-diffusion-models/#forward-diffusion-process
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def add noise(x 0, timestep):

# TODO: Define noise as a random Gaussian noise with similar shape
to x 0

# TODO: Compute x t by adding noise to x 0 based on g(x.|x,) formula

# TODO: return x t, noise

3. Reverse Process
The reverse process is defined as a Markov chain with a learned Gaussian transition model
that starts with the last noisy image from the forward process p(xT) = N(xT|O, ), which

is pure Gaussian noise. The goal of this process is to denoise the samples in the backward
direction.

Ps(xt 1X,)
(O— = —FEO— - —(O)

Py(x, ) = p(x,) tl;ll po(x,_ %) py(x,_ 1x) = N(x _ |u(x,0), Z,(x, )

Where:

* X, is the initial input image, xtis the noisy image at timestep ¢, xt_lis the noisy

image at timestep t-7, which is less noisy compared to X
e N is the Normal distribution with ue(xt, t) mean and Ze(xt, t) covariance matrix.

We need to use a neural network parameterized by 0 to learn the parameters such that

2
pe(xo) is as close as possible to q(xo). In this project, we set Ze(xt, t) = o, I and the only

parameters that the model learns are those of ue(xt, t). To implement the reverse process,

you need to make changes in unet.py.
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3.1. Implement Timestep Embedding

Before Implementing a neural network, consider that the parameters of the model are
shared across time. As a result, we need to tell the network what time step we are in. To
implement this, you need to encode the timesteps using positional embeddings. For this
project, you may use sinusoidal positional embedding.

PE(pos, 2i) = sin(—— 100002”‘1)

PE(pos, 2i + 1) = cos(——r 1000021/‘1)

Where:
e pos is the position of the token in sequence (timesteps)
e iistheindex of embedding dimension
e disthe embedding size

To implement this, complete the get sinusoidal timesteps embedding function.
def get sinusoidal timesteps embedding(timesteps, embedding dim) :
# TODO: Compute timesteps embeddings using above formula

# TODO: Return timesteps embeddings

3.2. Implement U-Net-based Model

Now, you need to implement a custom U-Net-based model as a neural network for

ue(xt, t). To do this, make changes in the unet class. Remember that you need to use

timesteps embeddings in the blocks of your neural network.

3.3. Implement Loss function

Now, we need a loss function to compute the difference between the added noise in the
forward step and the result of the reverse process.

2
stmple( ) = O,et[ ”Et B Ee( \ O(txo + \/1 B O(tEt, tHIl ]


https://en.wikipedia.org/wiki/U-Net

g oy g
Probabilistic Graphical Models - B. Nasihatkon RO ;lfu:"f{/b @
Sprlng 1403 (2024) K_M.Too:luﬁ::}WOFTECHNOLOGY e

where :

° € is the added noise in the forward process
e ¢ isthe predicted noise in the reverse process

e ||.|| denotes the Euclidean distance

def get loss(noise, noise pred) :

# TODO: Compute 1l2-norm between noise and noise pred

4. Train the model

Now, let's bring everything together and train the model. Train the model on each of the
given datasets: the MNIST dataset and the Persian digits and letters dataset. To do this,
complete the forward function in the DiffusionModel class. Then, you can run the
diffusion_model.py file to train the model.

def forward(x):

# TODO: Define variable t by randomly selecting a timestep for each
image in a batch of images of x

# TODO: Use add noise function to do the forward process by adding
noise to x

# TODO: Use reverse process model to do the reverse process by
predicting the noise of the forward step’s results

# TODO: Return noisy x, added noise, predicted noise

5. Evaluate & Sample

For this step, you need to complete the following functions in the diffusion_model.py
file. First, to evaluate your trained model, complete the evaluate function.

def evaluate(diffusion model, test loader, device="cuda”):

# TODO: Compute the accuracy of your trained model on the test data
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Now, it's time to generate new samples using your trained model. To do this, complete the
sample function.

@torch.no_grad()
def sample () :

# TODO: Use trained model to generate new samples

Presentation

For presentation, you should be able to:

e Provide a full explanation of all parts of the code

e Show the plots, including the model’s accuracy and loss during training for each
epoch

e Generate new samples for each of the given datasets
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